Sodium-lithium exchange and sodium-proton exchange are mediated by the same transport system in sarcolemmal vesicles from bovine superior mesenteric artery.
نویسندگان
چکیده
Several laboratories have reported that Na+-Li+ countertransport activities are increased in red blood cells from patients with essential hypertension. It has been proposed that the activity of this red blood cell transport system might reflect the activity of a similar system in vascular smooth muscle. We previously demonstrated Na+-Li+ exchange in sarcolemmal vesicles from canine artery and proposed that this transport function might be mediated by the Na+-H+ exchanger. In the present studies, however, we were unable to demonstrate Na+-Li+ countertransport in canine red blood cells. Since bovine red blood cells have a vigorous Na+-Li+ exchanger and we previously demonstrated Na+-H+ exchange in sarcolemmal vesicles from bovine artery, we wished to determine whether bovine sarcolemmal vesicles mediate Na+-Li+ exchange and whether this transport function is mediated via the Na+-H+ exchanger. We found that an outwardly directed proton or Li+ gradient stimulated 22Na+ uptake in sarcolemmal vesicles from bovine superior mesenteric artery. Li+ gradient-stimulated Na+ uptake was not due to electrical coupling between the two ions, was not affected by a change in membrane potential, and could not be explained by the parallel operation of Li+-H+ and Na+-H+ exchange. External Li+ inhibited proton gradient-stimulated Na+ uptake, and external protons inhibited Li+ gradient-stimulated Na+ uptake. Na+ efflux from vesicles was stimulated by inwardly directed gradients for Li+ or protons, and these effects were not additive. Proton efflux from vesicles was stimulated by inwardly directed gradients for Na+ or Li+, and these effects were not additive. Finally, Na+-H+ exchange and Na+-Li+ exchange in sarcolemmal vesicles were inhibited by 5-(N-ethyl-N-isopropyl)amiloride in an identical dose-dependent manner. In conclusion, Na+-Li+ countertransport could not be demonstrated in canine red blood cells, but as is the case with bovine red blood cells, sarcolemmal vesicles from bovine artery mediate Na+-Li+ countertransport. This transport function and sarcolemmal Na+-H+ exchange are mediated via a single 5-(N-ethyl-N-isopropyl)amiloride-sensitive cation exchanger with affinity for Na+, Li+, and protons. The cow, as opposed to the dog, may be a good animal model to test whether the activity of red blood cell Na+-Li+ countertransport is predictive of the activity of Na+-Li+ (and Na+-H+) exchange in vascular smooth muscle.
منابع مشابه
Sodium-lithium exchange in sarcolemmal vesicles from canine superior mesenteric artery.
Exchange of intracellular sodium for extracellular lithium readily occurs in vascular smooth muscle, but the mechanism of this exchange is not known. These studies examined whether a sodium-lithium countertransport system was present in the cell membrane of vascular smooth muscle. A sarcolemmal-enriched vesicle preparation was obtained from canine superior mesenteric artery via a magnesium aggr...
متن کاملClinical Studies Difference Between Human Red Blood Cell Na-Li Counter transport and Renal Na-H Exchange
Several laboratories have reported that the activities of sodium-lithium countertransport are increased in red blood cells from patients with essential hypertension. Based on the many similarities between this transport system and the renal sodium-proton exchanger, a hypothesis has been put forth in the literature that increased red blood cell sodium-lithium counter-transport activity may be a ...
متن کاملDifference between human red blood cell Na+-Li+ countertransport and renal Na+-H+ exchange.
Several laboratories have reported that the activities of sodium-lithium countertransport are increased in red blood cells from patients with essential hypertension. Based on the many similarities between this transport system and the renal sodium-proton exchanger, a hypothesis has been put forth in the literature that increased red blood cell sodium-lithium countertransport activity may be a m...
متن کاملDemonstration of a Na+/H+ exchange activity in purified canine cardiac sarcolemmal vesicles.
Purified canine cardiac sarcolemmal membrane vesicles exhibit a sodium ion for proton exchange activity (Na+/H+ exchange). Na+/H+ exchange was demonstrated both by measuring rapid 22Na uptake into sarcolemmal vesicles in response to a transmembrane H+ gradient and by following H+ transport in response to a transmembrane Na+ gradient with use of the probe acridine orange. Maximal 22Na uptake int...
متن کاملIncreased vacuolar Na(+)/H(+) exchange activity in Salicornia bigelovii Torr. in response to NaCl.
Shoots of the halophyte Salicornia bigelovii are larger and more succulent when grown in highly saline environments. This increased growth and water uptake has been correlated with a large and specific cellular accumulation of sodium. In glycophytes, sensitivity to salt has been associated with an inability to remove sodium ions effectively from the cytoplasm in order to protect salt-sensitive ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation research
دوره 65 3 شماره
صفحات -
تاریخ انتشار 1989